CSE 390B, Autumn 2022 Building Academic Success Through Bottom-Up Computing Finals Preparation & **Computer Networks**

Gearing up for Finals Week, E-Portfolio Workshop, Overview of Computer Networks

W UNIVERSITY of WASHINGTON

Lecture Outline

- Gearing up for Finals Week
 - Study Plan Outline and Tips for Success
- E-Portfolio Workshop
 - Reflection Work Session and Feedback
- Overview of Computer Networks
 - How Computers Connect to The Internet

Gearing up for Finals Week

- Revisit and reassess your goals each day
 - Break-up into different levels—minimal, solid, reach
- Have an accountability buddy
 - Study groups or working sessions—having someone who can help you stay motivated, accountable, and avoid procrastination
- Recall Bloom's Taxonomy
 - How is your preparation involving higher level thinking skills?

Stick to a routine

Provides normalcy & structure for maintaining sleep and wellness

Planning for Success on Finals Week

In groups, discuss the following for 4-6 minutes:

- What are some metacognitive strategies that you plan on using to succeed in finals week?
 - How can you stay disciplined or keep yourself accountable in applying these metacognitive skills?
- In terms of academic and metacognitive subjects, what are your strengths and weaknesses going into finals?
 - How can you cultivate your strengths and improve the areas you are weaker in?

Developing a Plan for Finals Week

- First, list the commitments that you have for finals week (final exams, final projects, presentations, etc.)
- Then, outline the steps that you'll need to follow to complete those tasks
 - Be specific with these steps instead of "review derivatives," add detail about the **how**: "Review lecture slides and examples on derivatives and redo five derivative problems on WebAssign"
- Lastly, add dates to when you will work on and complete each of the steps (be realistic here!)
 - Add these to your calendar

Lecture Outline

- Gearing up for Finals Week
 - Study Plan Outline and Tips for Success

E-Portfolio Workshop

Reflection Work Session and Feedback

Overview of Computer Networks

How Computers Connect to The Internet

E-Portfolio Workshop

- Individually, spend 15-20 minutes completing the following steps:
 - Aim to finalize the two metacognitive skills, two examples of you applying them, and one technical skill you plan on reflecting on
 - Begin drafting your reflection on a document (should be in paragraph form in final e-portfolio, but bullet points ok for now)
- Then, get into groups of 3-4 and complete the following:
 - One group member presents on their reflection so far
 - Each group member listening should provide one question, comment, constructive feedback, or complement to the presenter
 - Repeat until everyone has had a chance to present

Five-minute Break!

- Feel free to stand up, stretch, use the restroom, drink some water, review your notes, or ask questions
- We'll be back at:

Lecture Outline

- Gearing up for Finals Week
 - Study Plan Outline and Tips for Success
- E-Portfolio Workshop
 - Reflection Work Session and Feedback
- Overview of Computer Networks
 - How Computers Connect to The Internet

Overview of Computer Networks

We will go over an overview of networks

- Take CSE 333 (Systems Programming), CSE 461 (Computer Networks), and CSE 452 (Distributed Systems) to learn more
- Our focus:
 - Brief intro to what connecting to the internet looks like under the hood
 - What that connection might look like implemented in our computer

How Do Computer Networks Work?

- How do you think we connect computers in different physical locations?
- What modes of communication do you think computers use to network with one another?

Networks = Really, Really Long Wires

- At a fundamental level, there's nothing magic about the Internet—it's the same concepts we used to build our CPU, just with longer wires
 - Still 1s and 0s, still just combinational + sequential logic

Thinking about the Network: Layers

- To manage the complexity, we think about the network in layers
- It's all Os and 1s, but
 each layer is a different
 way of "framing" or
 thinking about those Os
 and 1s
 - Each layer zooms out a little more

Application Layer

- Conceptually the "top" layer: looking at internet traffic as direct communication between applications
- Common use: HTTP (HyperText Transfer Protocol)
 - Your browser sends an HTTP request to a server
 - The server sends back an HTTP response with data attached

Application Layer

- Conceptually the "top" layer: looking at internet traffic as direct communication between applications
- Common use: HTTP (HyperText Transfer Protocol)
 - Your browser sends an HTTP request to a server
 - The server sends back an HTTP response with data attached

Data Link Layer

- A computer network is simply multiple computers connected by a single wire
- Why is it better to send smaller chunks of data?

Data Link Layer

Every computer will "hear" the message

How do the other computers know to ignore an incoming packet of data?

NIC (Network Interface Card)

- We don't want the CPU to waste time always listening to the network wire, especially when it's not even the destination computer
- Solution: the NIC—a new piece of the computer dedicated to dealing with the network wire
 - Listens to the network wire until it hears a destination address, checks if it matches this computer, and only sends to CPU if so

- Before, we would have to accept NIC as "magic"
- Now, we can imagine exactly how to build this chip, and for a simple implementation, turns out it's doable!

— 19

- Before, we would have to accept NIC as "magic"
- Now, we can imagine exactly how to build this chip, and for a simple implementation, turns out it's doable!

- Before, we would have to accept NIC as "magic"
- Now, we can imagine exactly how to build this chip, and for a simple implementation, turns out it's doable!

- Before, we would have to accept NIC as "magic"
- Now, we can imagine exactly how to build this chip, and for a simple implementation, turns out it's doable!

- Before, we would have to accept NIC as "magic"
- Now, we can imagine exactly how to build this chip, and for a simple implementation, turns out it's doable!

- Before, we would have to accept NIC as "magic"
- Now, we can imagine exactly how to build this chip, and for a simple implementation, turns out it's doable!

- Before, we would have to accept NIC as "magic"
- Now, we can imagine exactly how to build this chip, and for a simple implementation, turns out it's doable!

- Before, we would have to accept NIC as "magic"
- Now, we can imagine exactly how to build this chip, and for a simple implementation, turns out it's doable!

- Before, we would have to accept NIC as "magic"
- Now, we can imagine exactly how to build this chip, and for a simple implementation, turns out it's doable!

Connecting NIC to Memory

- The keyboard and screen communicated with the CPU via memory maps—agreed-upon regions of RAM that can be read/written by the hardware of the devices themselves
- The NIC could be implemented in the same way
 - Every time the right address is detected, copy the following data into part of RAM where the CPU can retrieve it once it gets a

Takeaways: Computer Networks

- The network is fundamentally the same hardware we've been looking at
- Its incredible power comes from scale: how much data and how many computers it connects
 - To manage this complexity, we think of it in layers
- Interfacing with the network can be done with specialized hardware
 - This frees the CPU from monitoring constantly
 - Access data only when needed

Lecture 18 Reminders

Next week: CSE 390B Victory Lap, TA-led Activities

Project Reminders

- Project 7, Part II (Professor Meeting Report) due tonight (12/1) at 11:59pm
- Project 8 (Debugging & Implementing a Compiler) due next Tuesday (12/6) at 11:59pm
- Final Project, Part I (E-Portfolio Outline) due next Thursday (12/8) at 11:59pm
- Course Staff Support
 - Eric has office hours in CSE2 153 today after lecture
 - Feel free to post your questions on the Ed board as well